Special Session on Intelligent Transport Systems

<table>
<thead>
<tr>
<th>Dr Peter Ball</th>
<th>Dr Sinan Sinanovic</th>
<th>Dr Paul Mitchell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxford Brookes University</td>
<td>Glasgow Caledonian University</td>
<td>University of York</td>
</tr>
<tr>
<td>pball@brookes.ac.uk</td>
<td>sinan.sinanovic@gcu.ac.uk</td>
<td>Paul.mitchell@york.ac.uk</td>
</tr>
</tbody>
</table>

Peter Ball received the BSc and Ph.D. degrees from Loughborough University and University College London respectively. He spent over 20 years in the telecommunications industry, with GEC and Fujitsu, working on transmission equipment specification and design. He joined Oxford Brookes in 2003 and is currently a Reader in the School of Engineering, Computing and Mathematics. His research interests include wireless sensor networks, intelligent transport systems and sensor networks for smart cities.

Sinan Sinanovic obtained his Ph.D. in electrical and computer engineering from Rice University, Houston, Texas, in 2006. In the same year, he joined Jacobs University Bremen in Germany as a post-doctoral fellow. In 2007, he joined the University of Edinburgh, where he has worked as a research fellow in the Institute for Digital Communications. He is currently a lecturer at Glasgow Caledonian University where his research interests include wireless communications, optical wireless, anomaly detection, interference mitigation and spatial modulation.

Paul Mitchell received the M.Eng and Ph.D. degrees from the University of York, York, U.K., in 1999 and 2003, respectively. He has been a member of the Department of Electronics at York since 2002, and is currently Senior Lecturer. He has gained industrial experience at BT and QinetiQ. Research interests include radio resource management, medium access control and routing, wireless sensor networks, underwater communications, cognitive radio, traffic modelling, queuing theory, satellite and mobile communication systems.

Scope of the session

Intelligent transportation systems (ITS) are needed to support a successful economy and to address the requirements for reduced emissions and better management of congestion. As we move towards a new era with the introduction of autonomous vehicles, there is an opportunity to establish a more efficient and much safer transportation environment and ITS will play a key role in delivering these goals. Original papers addressing developments in sensor, communication and networking technologies and their impact on future transportation solutions are invited for this session.

Prospective authors are invited to submit original and unpublished work on the following research topics related to this Special Session:

- Communications and networking for driven and autonomous vehicles (V2X)
- Wireless and sensor technologies for vehicular networks
- Safety and security considerations including low latency communication
- Multimedia applications and services for connected vehicles
- Network architectures, protocols and standards for intelligent transport systems (ITS)
- Using 5G for ITS
- Data management and control of ITS
- Applications of ITS for smart cities
- Modelling, simulation and performance evaluation of vehicular networks and ITS
- Experimental results from testbeds and pilot studies